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Peak position of dissipation spectrum in turbulent boundary layers
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Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603, Japan

~Received 24 November 1998!

The peak locations of energy dissipation spectrum (ykp
1 ) are investigated experimentally in the low Reynolds

number (Ru,5000) zero-pressure-gradient turbulent boundary layers. These peaks are scaled by the relation
ykp

1 52(u* d/n)1/252R
*
1/2, where u* is friction velocity andd is the boundary layer thickness. They are

located close to the peak positions of the Reynolds shear stress (yp
1), that is,ykp

1 .yp
1 . This result predicts that

the small-scale structures residing in high-energy dissipation regions concentrate aroundyp
1 .
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I. INTRODUCTION

In this short paper we consider the peak wave numbe
the dissipation spectrumkp near the wall region in zero
pressure-gradient boundary layers. Much attention has b
paid recently to the small-scale structures wrapped by
high-vorticity concentration regions, which tend to for
tubelike or sheetlike structures@1,2#. These diameters an
lengths are estimated to be on the order of Kolmogo
length scale and integral scale, respectively. Significant
formation is contained in the wave-numberkp to consider the
small coherent vortex dynamics.

From the empirical knowledge obtained by analyzi
many experimental data, She and Jackson predicted tha
energy spectrum is dominated by an approximatek21 law
over thek25/3 law around the wave number ofkp @3#. They
consider a spectrum flatter than2 5

3 to reflect the coheren
vortex dynamics occurring aroundk.kp . This is confirmed
by the numerical simulation of Jime´nez et al. @1#, who re-
ported that the local energy spectrum where the flow
cludes the vortex tubes displaysk21 behavior, while the glo-
bal spectrum is consistent withk25/3. Passotet al. @2# also
discussed this problem and found from their numerical d
that ak25/3 spectrum develops following larger wave num
bers by ak21 range, and the transition occurs close to t
Taylor wave number.

We investigate the zero-pressure-gradient boundary
ers, and discuss the peak wave number of dissipation sp
close to the wall, which seem to be a key factor while thin
ing about the small-scale structures. Finally, the relation
tween the peak locations of dissipation spectra and thos
Reynolds shear stress will be discussed.

II. EXPERIMENTAL CONDITION

A typical two-dimensional turbulent boundary layer is d
veloped on a flat plate with zero-pressure gradient in a w
tunnel with a test section 0.3231.06 m2 in area and 2.6 m in
length. The measured fluctuation velocity in a free stre
region is smaller than 0.3%. A tripping wire of 1 mm
diameter is placed 50 mm downstream of the leading e
and adjusted carefully to minimize flow asymmetry. The e
perimental data are measured at 1900 mm downstream
the leading edge by means of bothI probe andX probe. The
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I probe is made of tungsten wire with the sensor lengthl s
.0.5 mm, and its diameter isf53.1 mm. TheX probe has
the dimensionsl s51.0 mm andf55.0 mm. Velocity sig-
nals were sampled by a 12-bit A/D converter with sampli
frequency 100 and 50 kHz.

Typical flow characteristics, such as a free streamw
velocity U0, a friction velocityu* , a momentum thickness
u, the Reynolds number based on the momentum thickn
and the Reynolds number defined asR* [u* d/n, are sum-
marized in Table I.

III. PEAK POSITIONS OF DISSIPATION SPECTRA

We shall consider the energy dissipation field close to
wall. The wave-numberkp at the peak position of the diss
pation spectrum is defined as

]

]k1
$D~k1!%uk15kp

50, D~k1![k1
2E11~k1!, ~1!

TABLE I. Typical characteristics of the boundary layers.

~a! Experimental results ofI-probe measurements
No. U0 u* u Ru R* l s /f

DI1 5.48 0.244 3.88 1364 596 167
DI2 8.76 0.371 3.82 2149 905 167
DI3 12.04 0.439 3.82 2913 1141 167
DI4 15.32 0.616 3.54 3481 1346 167
DI5 18.73 0.739 3.48 4167 1604 167
DI6 4.57 0.203 4.47 1413 560 137
DI7 7.62 0.321 4.23 2227 822 137
DI8 10.69 0.439 3.88 2862 1056 137
DI9 13.78 0.555 3.60 3426 1264 137
DI10 11.83 0.486 3.79 2799 1032 146
DI11 15.21 0.611 3.72 3533 1296 146
DI12 18.59 0.734 3.60 4175 1465 146
DI13 21.98 0.857 3.44 4710 1658 146

~b! Experimental results ofX-probe measurements
DX1 5.32 0.237 3.76 1324 627 200
DX2 8.58 0.368 3.37 1897 869 200
DX3 12.49 0.479 3.21 2483 1096 200
7235 ©1999 The American Physical Society
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whereE11(k1) is the one-dimensional energy spectrum in t
streamwise direction andk1 is the wave number. Only the
streamwise component is considered in this report, so
wave number is expressed ask instead ofk1, and we call
D(k) the dissipation spectrum. Using Taylor’s frozen flo
hypothesis and the isotropic relation, energy dissipation
be computed as

«* 515nE
0

`

D~k1!dk1515n^~]u/]x!2&. ~2!

This is called a one-dimensional surrogate. As it is diffic
to determine thekp value accurately, the dissipation spe
trum was approximated by the 9th-order polynomial@4#, and
the peak position was then obtained from it~see Fig. 1!.

The previous experimental results@3–5# have shown that
the following relation holds:

kph.0.1, ~3!

whereh is the Kolmogorov length defined ash[(n3/«)1/4

and« is the dissipation rate per unit mass. If Kolmogorov
assumption~1941! is completely true, the ratiokph would
have a unique value independent of the Reynolds num
based on the Taylor microscaleRl . However, this ratiokph
may be a weak function ofRl because of the small-sca
intermittency in the velocity field. At this stage the expe
mental accuracy is not enough to reveal that functional r
tion. The typical results ofkph* @h* [(n/«* )1/4# are plotted
against the distance from the wall in Fig. 2. In the ou
region, 0.2,y/d,0.7, the ratio satisfies Eq.~3!, but in the
inner region defined here for convenience as 15,y1,100, it
follows the relation,

FIG. 1. Typical example of the energy dissipation spectrum,
horizontal axis is normalized byh* @h* [(n/«* )1/4#. The solid
line is the 9th-order polynomial fit.

FIG. 2. The product of the peak wave number and
Kolmogorov length scale is plotted against the distance from
wall. The solid line indicates Eq.~4!.
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kph* 5Ck~y1!a, ~4!

whereCk anda are constants. There is no necessity to s
isfy Eq. ~3! in the near wall region because the Kolmogor
scaleh depends only on« andn; howeverkp is representa-
tive of small-scale coherent vortexes.

The peak wave-numberkp is obtained at each measurin
position, and they are plotted as a function of the dista
from the wall in Fig. 3. In each Reynolds number, there i
peak location at some distance from the wall. Here, we
fine this asykp

1 ~see arrows in the graph!. It is clear from the
graph plotted in Fig. 4 thatykp

1 is a function of Reynolds
number. The solid line indicates the following relation,

ykp
1 52R

*
1/2. ~5!

Although there is scatter, this equation can predict the dis
bution of ykp

1 . The inset shows the local mean velocity
ykp

1 . The ratio is almost constantU(ykp
1 )/U050.62 indepen-

dent of the Reynolds number. These features are very sim
to the peak locations of the Reynolds shear stressyp

1 ; thus,
we will discuss these peaks in Sec. IV.

We try to evaluate the dissipation rate normalized by
inner variables by the following relation,

«15«n/u
*
4 5d1~y1!2d2, «5n K ]uj

]xi
S ]ui

]xj
1

]uj

]xi
D L ,

~6!

e

e
e

FIG. 3. The peak wave-number distribution for different Re
nolds numbers. The arrows indicate the maximum location.

FIG. 4. The relation between the peak position of the ene
dissipation spectrum and Reynolds number. Inset figure indic
the local mean velocity atykp

1 .
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by means of the experimental and numerical data reporte
Klebanoff (Ru;8000) @6#, Honkan and Andreopoulo
(Ru52790) @7#, Balint, Wallace, and Vukoslavc˘ević
(Ru52685) @8#, and Spalart (Ru51410) @9#. The dissipation
rate can be scaled in the inner region by Eq.~6!; the expo-
nents ared1.4.2 andd2.1.1, respectively. A further sim-
plification can be made by the local isotropy assuming T
lor’s frozen flow hypothesis by Eq.~2!. However, the
evaluation of«* cannot be correct close to the wall, that
«Þ«* . Our experimental data indicate that the spatial
rivative of streamwise velocity, which is normalized by th
inner variables, is scaled by the relation;^(]u1/]x1)2&
5d3(y1)2d4 with d3.0.03 andd4.0.8 for y1,200. Then
the difference between Eq.~2! and Eq.~6! is significant close
to the wall. In this paper, we assume the inner scaling
both«1 and^(]u1/]x1)2& is appropriate, and the exponen
d2 andd4 are used in the following analysis.

IV. RESULTS AND DISCUSSION

We have discussed the scaling ofykp
1 and the ratio

U(ykp
1 )/U0 against the Reynolds numberR* . These results

are very similar to the feature of the peak locations for
Reynolds shear stress (yp

1) reported so far. The peak pos
tions yp

1 are scaled by the empirical relation,yp
15C1R

*
1/2,

and the velocity ratio isU(yp
1)/U05C2, whereC1 and C2

are constants. The value ofC1 was obtained by Long and
Chen @10# and by Sreenivasan@11# independently, at 1.87
and 2, respectively. Simpson reportedC250.63 @12#, while
Sreenivasan obtained 0.65@11,13#. Therefore, at least for the
low Reynolds number flows (Ru,5000), the experimenta
results assume the relationyp

1.ykp
1 .

It might seem somewhat curious that these two points
located at almost the same position from the wall. The c
ous feature arises because the Reynolds shear stress
lieved to be the representative of large scale, while the
ergy dissipation is associated with the smallest scale. S
discussion of the resultyp

1.ykp
1 is given below.

The turbulence energy equation derived from the bou
ary layer equation shows that in the inner region except c
to the wall, the advection term can be neglected and
production term balances the dissipation term. In the tw
dimensional boundary layer, this means, approximately,

2^uv&
dU

dy
.«. ~7!

The local isotropic relation enables us to obtain«* instead of
«. But the difference is significant close to the wall; so, t
following function is introduced,

«* /«5 f ~y1!, h* /h5 f ~y1!21/4, ~8!

wheref (y1) can be expressed by the empirical scaling fo
and the exponent discussed in Sec. III as

f ~y1!515~d3 /d1!~y1!d22d4. ~9!

The peak locationykp
1 is contained in the lower log-law re

gion, so the empirical result of Eq.~4! allows us to obtain the
following relation:
by
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2^uv&.
ky

u*
S n3

h4D5
ky1

u
*
2 H n4f ~y1!

~Cky
1a/kp!4J

5
k

Ck
4S n2

u*
D 2

kp
4~y1!124a1d22d4~15d3 /d1!. ~10!

The value of the exponenta defined in Eq.~4! is not clear.
However, experimental data, indicated by a solid line in
inset of Fig. 2, suggest thata.0.3. In this case, when both
sides of Eq.~10! are differentiated with respect to the di
tance from the wall,

]

]y1S 2^uv&
u
*
2 D 5

]

]y1 H k

Ck
4 S 15d3

d1
D S n

u*
D 4

kp
4J

54
k

Ck
4S 15d3

d1
D S n

u*
D 4

kp
3S ]kp

]y1D , ~11!

If there is a peak position in the shear stress profile, t
means

]

]y1S 2^uv&
u
*
2 DU

y15y
p
1

54
k

Ck
4S 15d3

d1
D S n

u*
D 4

kp
3S ]kp

]y1D
y15y

kp
1

50⇔yp
15ykp

1 . ~12!

Therefore, the peak location of the shear stress matches
of the dissipation spectrum.

In Fig. 5 the dissipation spectra collapse when scaled
the wave-numberkp of peak dissipation and also by th
spectrum level atkp . In the inner region all the spectr
scaled well by a single curve,

D~k!/D~kp!5b~k/kp!exp~2gk/kp!, ~13!

where the coefficients are obtained uniquely under the c
dition that the dissipation spectrum peaks atk5kp ; thus,b
5e52.7182 . . . and g51. The existence of an invers
power-law region for the streamwise velocity component
wall-bounded shear flows has been noted in the litera
before@see, for example, Refs.@11# and@14##. Such a power
law can be comprehended by the presence of vortex tu
which are so-called quasistreamwise vortices. The tube

FIG. 5. The normalized dissipation spectrum by the peak wa
numberkp and the spectrum level atkp . The solid line indicates Eq
~13!.
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structures, which have been identified by the numer
simulation@1,2#, are almost the same order of diameter as
quasistream vortices in wall-bounded shear flow. The lon
tudinal length scale seems to be 40–50 times the diam
because the inverse power-law region extends to fifty tim
the peak wave numberkp in Fig. 5.

We should also notice the exponential form of ener
spectrum in the dissipation range (5!k/kp), which is re-
ported by numerical simulations in isotropic flow@15,16#. In
the near wall region, however, this exponential form is pro
ably influenced by the quasistreamwise vortices; thus,
problem will be discussed in the next step of our researc

V. CONCLUSIONS

In the zero-pressure-gradient low Reynolds numberRu
,5000) turbulent boundary layer, the peak locations of
J
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shear stress profile and the energy dissipation spectrum
discussed. Based on the experimental data analysis, the
position of the energy dissipation spectrumykp

1 is located
very close toyp

1 position. The distribution ofykp
1 is scaled

well by ykp
1 52R

*
1/2, and the local mean velocity ratio is con

stant,U(ykp
1 )/U0.0.62.
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