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Peak position of dissipation spectrum in turbulent boundary layers
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(Received 24 November 1998

The peak locations of energy dissipation spectrlyﬁg)( are investigated experimentally in the low Reynolds
number R,<5000) zero-pressure-gradient turbulent boundary layers. These peaks are scaled by the relation
Yip=2(Uy 8lv)Y2=2RY2 whereu, is friction velocity and s is the boundary layer thickness. They are
located close to the peak positions of the Reynolds shear sy§$sthat is,yifp:y; . This result predicts that
the small-scale structures residing in high-energy dissipation regions concentrate yagound
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PACS numbsds): 47.15-x

I. INTRODUCTION | probe is made of tungsten wire with the sensor lentgh,
=0.5 mm, and its diameter g=3.1 um. TheX probe has
In this short paper we consider the peak wave number othe dimensiong,=1.0 mm and$=5.0 um. Velocity sig-
the dissipation spectrurk, near the wall region in zero- nals were sampled by a 12-bit A/D converter with sampling
pressure-gradient boundary layers. Much attention has bedrequency 100 and 50 kHz.
paid recently to the small-scale structures wrapped by the Typical flow characteristics, such as a free streamwise
high-vorticity concentration regions, which tend to form velocity U, a friction velocityu, , a momentum thickness
tubelike or sheetlike structurdd,2]. These diameters and @, the Reynolds number based on the momentum thickness,
lengths are estimated to be on the order of Kolmogorowand the Reynolds number defined Rs=u, &/v, are sum-
length scale and integral scale, respectively. Significant inmarized in Table |.
formation is contained in the wave-numbgrto consider the
small coherent vortex dynamics.
From the empirical knowledge obtained by analyzing lll. PEAK POSITIONS OF DISSIPATION SPECTRA

many experimental data, She and Jackson predicted that the we shall consider the energy dissipation field close to the

energy spectrum is dominated by an approxiniaté law  wall. The wave-numbek,, at the peak position of the dissi-
over thek 52 law around the wave number &f [3]. They  pation spectrum is defined as

consider a spectrum flatter than? to reflect the coherent

vortex dynamics occurring arourkd=k,. This is confirmed P

by the numerical simulation of Jimezet al. [1], who re- —{D(k)}|x. =k =0, D(kl)EkiEll(kl)v (1)
ported that the local energy spectrum where the flow in- ST v

cludes the vortex tubes displags® behavior, while the glo-

bal spectrum is consistent with >3, Passotet al. [2] also TABLE |. Typical characteristics of the boundary layers.

discussed this problem and found from their numerical data :

that ak > spectrum develops following larger wave num- (a) Experimental results dfprobe measurements

bers by ak ™! range, and the transition occurs close to theNo. Uo Uy ¢ Ry R« ls/é

Taylor wave number. . DI1 548 0244 388 1364 596 167
We investigate the zero-pressure-gradient boundary lay-

ers, and discuss the peak wave humber of dissipation spectra 8.76 0.371 3.82 2149 905 167
' DI3 12.04 0.439 3.82 2913 1141 167

close to the wall, which seem to be a key factor while think-

ing about the small-scale structures. Finally, the relation beP!4 15.32 0.616 3.54 3481 1346 167

tween the peak locations of dissipation spectra and those &5 1873 0739 3.48 4167 1604 167
Reynolds shear stress will be discussed. DI6 4.57 0.203  4.47 1413 560 137
DI7 7.62 0.321 4.23 2227 822 137
DI8 10.69 0.439 3.88 2862 1056 137

Il EXPERIMENTAL CONDITION DI9 1378 0555 3.60 3426 1264 137

A typical two-dimensional turbulent boundary layer is de- DI10 11.83 0486 379 2799 1032 146
veloped on a flat plate with zero-pressure gradient in a windPI11 1521 0611 372 3533 1296 146
tunnel with a test section 0.321.06 nf in area and 2.6 min DI12 18.59 0.734 3.60 4175 1465 146
length. The measured fluctuation velocity in a free streanDlI13 21.98 0.857 3.44 4710 1658 146

region is smaller than 0.3%. A tripping wire of 1 mm in (b) Experimental results ok-probe measurements
diameter is placed 50 mm downstream of the leading edgexi 5.32 0.237 3.76 1324 627 200
and adjusted carefully to minimize flow asymmetry. The ex-px2 8.58 0.368 3.37 1897 869 200

perimental data are measured at 1900 mm downstream fromix3 12.49 0.479 3.21 2483 1096 200
the leading edge by means of bdthrobe andX probe. The
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FIG. 1. Typical example of the energy dissipation spectrum, the
horizontal axis is normalized by*[ »* =(v/e*)¥4]. The solid
line is the 9th-order polynomial fit. FIG. 3. The peak wave-number distribution for different Rey-

nolds numbers. The arrows indicate the maximum location.
whereEq4(k4) is the one-dimensional energy spectrum in the
streamwise direction ankl, is the wave number. Only the ko7* =Ci(y"), %)
streamwise component is considered in this report, so the

wave number is expressed ksnstead ofk;, and we call \yherec, anda are constants. There is no necessity to sat-
D(k) the dissipation spectrum. Using Taylor's frozen flow jsqy £q. (3) in the near wall region because the Kolmogorov
hypothesis and the isotropic relation, energy dissipation Calcaley depends only or andv; howeverk,, is representa-

be computed as tive of small-scale coherent vortexes.
. The peak wave-numbéx;, is obtained at each measuring
*—15 f D (k) dk: = 150(( Jul 35)2). 2 position, and _they are plotted as a function of the dlstgnce
¢ g 0 (ka)dky "{( ) @ from the wall in Fig. 3. In each Reynolds number, there is a

peak location at some distance from the wall. Here, we de-

This is called a one-dimensional surrogate. As it is difficultfine this asy,, (see arrows in the graphit is clear from the
to determine thek, value accurately, the dissipation spec-graph plotted in Fig. 4 thay,, is a function of Reynolds
trum was approximated by the 9th-order polynonél and  number. The solid line indicates the following relation,
the peak position was then obtained fronisee Fig. L

The previous experimental resu[-5] have shown that Vo= 2R}2. (5)
the following relation holds:

Although there is scatter, this equation can predict the distri-
kp7=0.1, (3 bution ofyy,. The inset shows the local mean velocity at
Ykp- The ratio is almost constahit(y,,)/Uo=0.62 indepen-
where 7 is the Kolmogorov length defined ag=(»*/)"*  dent of the Reynolds number. These features are very similar
ande is the dissipation rate per unit mass. If Kolmogorov's to the peak locations of the Reynolds shear stﬁssthus,
assumption(194]) is completely true, the ratig,» would e will discuss these peaks in Sec. IV.
have a unique value independent of the Reynolds number we try to evaluate the dissipation rate normalized by the

based on the Taylor microscaly . However, this ratik,7  inner variables by the following relation,
may be a weak function oR, because of the small-scale

intermittency in the velocity field. At this stage the experi- <07Uj( au; &uj)>
il E=V o - il

mental accuracy is not enough to reveal that functional rela- e*=ev/u;=d (yh) 9

tion. The typical results df, »* [ 7* =(v/e*)"*] are plotted
against the distance from the wall in Fig. 2. In the outer
region, 0.2y/5<0.7, the ratio satisfies Eq3), but in the

ax;\ ax;  ox

(6)

inner region defined here for convenience as ¥5 <100, it 100.0 ' T ' T "
follows the relation, - -
80.0t- ]
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FIG. 2. The product of the peak wave number and the FIG. 4. The relation between the peak position of the energy
Kolmogorov length scale is plotted against the distance from thalissipation spectrum and Reynolds number. Inset figure indicates
wall. The solid line indicates Ed4). the local mean velocity at;p.
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by means of the experimental and numerical data reported by

i
Klebanoff (R,~8000) [6], Honkan and Andreopoulos 10 AR
(Ry=2790) [7], Balint, Wallace, and Vukoslaewic ~ . of Rg=4710 3
(R,=2685)[8], and SpalartR,=1410)[9]. The dissipation -é_éj 107 3
rate can be scaled in the inner region by Eyj; the expo- ) lE ]
nents ared;=4.2 andd,=1.1, respectively. A further sim- = 100 3
plification can be made by the local isotropy assuming Tay- < F ]
lor's frozen flow hypothesis by EQq(2). However, the - 10'2§— E
evaluation ofe* cannot be correct close to the wall, that is, 2 y'=2139,53.5,80.2, 117.7 3
e#¢e*. Our experimental data indicate that the spatial de- 1073l il sl
rivative of streamwise velocity, which is normalized by the 10 10 10 10
inner variables, is scaled by the relatiofGou™/dx")?) k/kp
=dy(y™) % with d3=0.03 andd,=0.8 fory*<200. Then
the difference between E¢R) and Eq.(6) is significant close FIG. 5. The normalized dissipation spectrum by the peak wave-

to the wall. In this paper, we assume the inner scaling fohumberk, and the spectrum level & . The solid line indicates Eq.
bothe* and((du™/dx™)?) is appropriate, and the exponents (13).
d, andd, are used in the following analysis.

. M A
IV. RESULTS AND DISCUSSION u, 774 Ui l(Cky+a/kp)4
We have discussed the scaling pfp and the ratio [ 1212
U(yk*p)/UO against the Reynolds numbBy, . These results = _4(_) kg(y+)1‘4“+d2‘d4(15d3/d1). (10)
are very similar to the feature of the peak locations for the Cy\ Uy

Reynolds shear stresg;() reported so far. The peak posi- i . .
tions y; are scaled by the empirical relatioyll;’:ClRl/z The value of the exponeni defined in Eq.(4) is not clear.

. o n B * However, experimental data, indicated by a solid line in the
and the velocity ratio i8J(y, )/Uo=C,, whereC, andC, inset of Fig. 2, suggest that=0.3. In this case, when both

are constants. The value @f; was obtained by Long and _; . . . o
Chen[10] and by Sreenivasafil] independently, at 1.87 ,[S;?]iz ?rgﬁqé]tozlvng differentiated with respect to the dis

and 2, respectively. Simpson report€d=0.63[12], while
Sreenivasan obtained 0.651,13. Therefore, at least for the 9 [ —(uv) 9 x (15d5)( v\
low Reynolds number flowsR,<5000), the experimental a_+( —2) [F( d )(u_) g}
results assume the relatign =y,,,. y Lo kd 1A

It might seem somewhat curious that these two points are k [15d3) [ v
located at almost the same position from the wall. The curi- = F( d_)<
ous feature arises because the Reynolds shear stress is be- ki H1

lieved to be the representative of large scale, while the en; . L )
ST . : If there is a peak position in the shear stress profile, that

ergy dissipation is associated with the smallest scale. Some
4
:44(1_5%)(9 k(ﬁ_kp)
+
y*zy; Cy d; Uy P\ gy y+:y:p

_(9y_+

*

4 [ ok
3 p

U,

discussion of the resujt;zy;p is given below. means

The turbulence energy equation derived from the bound- —(uv)
ary layer equation shows that in the inner region except Close—+< )
to the wall, the advection term can be neglected and the y
production term balances the dissipation term. In the two-

U2

*

dimensional boundary layer, this means, approximately, =0@y;=yk+p- (12
du Therefore, the peak location of the shear stress matches that
—<Uv>d—yz€- (@) of the dissipation spectrum.

In Fig. 5 the dissipation spectra collapse when scaled by

The local isotropic relation enables us to obtaininstead of ~ the wave-numbek, of peak dissipation and also by the
e. But the difference is significant close to the wall; so, thespectrum level ak,. In the inner region all the spectra

following function is introduced, scaled well by a single curve,
e*le=f(y"), n*Inp=f(y") ¥4 (8) D(k)/D(kp) = B(k/kp)exp(— ykikp), (13
wheref(y™) can be expressed by the empirical scaling formwhere the coefficients are obtained uniquely under the con-
and the exponent discussed in Sec. Ill as dition that the dissipation spectrum peaksatk, ; thus, 8
=e=2.718 ... andy=1. The existence of an inverse
f(y")=15(ds/d;)(y")%2 %, (9)  power-law region for the streamwise velocity component in

wall-bounded shear flows has been noted in the literature
The peak Iocatiory;p is contained in the lower log-law re- before[see, for example, Reffl1] and[14]]. Such a power
gion, so the empirical result of E¢) allows us to obtain the law can be comprehended by the presence of vortex tubes,
following relation: which are so-called quasistreamwise vortices. The tubelike
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structures, which have been identified by the numericathear stress profile and the energy dissipation spectrum were
simulation[1,2], are almost the same order of diameter as thaliscussed. Based on the experimental data analysis, the peak
quasistream vortices in wall-bounded shear flow. The longiposition of the energy dissipation spectrtyﬁp is located
tudinal length scale seems to be 40-50 times the diamet&ery close toy, position. The distribution OWp is scaled
because the inverse power-law region extends to fifty timege|| py y:pZZR}(/{ and the local mean velocity ratio is con-
the peak wave numbdxrp_ in Fig. 5. . stant,U(y:p)/Uozo.GZ.

We should also notice the exponential form of energy
spectrum in the dissipation range €&/k,), which is re-
ported by numerical simulations in isotropic flgw5,16. In
the near wall region, however, this exponential form is prob-
ably influenced by the quasistreamwise vortices; thus, this ACKNOWLEDGMENTS

problem will be discussed in the next step of our research. . ] )
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